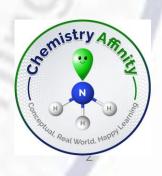
Check Your Learning

Coordination chemistry

Questions from JEE Main 2025

Chemistry Affinity

Conceptual, Real World, Happy Learning



Match the LIST-I with LIST-II

LIST-I (Complex/ Species)	LIST-II (Shape & magnetic moment)	
A. [Ni(CO) ₄]	I. Tetrahedral, 2.8 BM	
B. [Ni(CN) ₄] ²⁻	II. Square planar, 0 BM	
C. [NiCl ₄] ²⁻	III. Tetrahedral, 0 BM	
D. [MnBr ₄] ²⁻	IV. Tetrahedral, 5.9 BM	

- A-I, B-II, C-III, D-IV
- B A-IV, B-I, C-III, D-II
- A-III, B-II, C-I, D-IV
 - D A-III, B-IV, C-II, D-I

- A. Ni(co)4 => Tetrahedral => Ni(d) => 210 => 0 BM => TT
- B. [M[(cn)4]2 => 5 quare planar => M((1) => 18 => 0 BM => II
- C. [Mi C4]2 =) Tetrahedral => Mi(I)=> 1 => 2 unpaind cledron => I
- D. [MnBP4]2 =) Tetrahelzal =) Mn(II) =) d^{5} =) Sunpaired electron =) \overline{M}

The number of species from the following that are involved in sp^3d^2 hybridization is :

 $[Co(NH_3)_6]^{3+}$, SF_6 , $[CrF_6]^{3-}$, $[CoF_6]^{3-}$, $[Mn(CN)_6]^{3-}$, and $[MnCI_6]^{3-}$

(A) 4, (B) 3, (C) 5, (D) 6

JEE Main 2025

sp³d² hybridization

SF₆

 $[CrF_6]^3$

 $[CoF_6]^{3-}$

[MnCl₆]³⁻

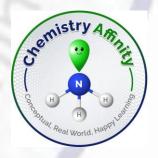
d²sp³ hybridization

 $[Co(NH_3)_6]^{3+}$

 $[Mn(CN)_6]^{3-}$

Correct option:(A) 4

Given below are two statements:


JEE Main 2025

Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism.

Statement II: cis- and trans- platin are heteroleptic complexes of Pd.

In the light of the above statements, choose the correct answer from the options given below:

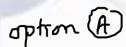
- A Statement I is true but Statement II is false
- Both Statement I and Statement II are true
- © Both Statement I and Statement II are false
- D Statement I is false but Statement II is true

Match List - I with List - II.

List - I (Complex)	List - II (Primary va	alency and Secondary valency)
(A) [Co(en) ₂ Cl ₂]Cl	(I) 3, 6	A => (ا)
(B) [Pt(NH ₃) ₂ Cl(NO ₂)]	(II) 3, 4	B=> (IV) soften C
(C) Hg [Co(SCN) ₄]	(III) 2, 6	رانا) (= رانا) ع = المرافع ا
(D) [Mg (EDTA)] ²⁻	(IV) 2, 4	

- A (A)-(I), (B)-(III), (C)-(II), (D)-(IV)
- B (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
- (A)-(I), (B)-(IV), (C)-(II), (D)-(III)
- D (A)-(III), (B)-(I), (C)-(II), (D)-(IV)

(A)
$$\begin{pmatrix} \Gamma \\ \Gamma \\ CO \\ CO \\ R \end{pmatrix}$$


$$\begin{pmatrix} \Gamma \\ R \end{pmatrix}$$

$$\begin{pmatrix}$$

The number of unpaired electrons responsible for the paramagnetic nature of the following complex species are respectively:

[Fe(CN)₆]³⁻, [FeF₆]³⁻, [CoF₆]³⁻, [Mn(CN)₆]³⁻

'X' is the number of acidic oxides among VO_2 , V_2O_3 , CrO_3 , V_2O_5 and Mn_2O_7 . primary valency of cobalt The $[Co(H_2NCH_2CH_2NH_2)_3]_2(SO_4)_3$ is Y. The value of X + Y is _____

(A) 3, (B) 4, (C) 2, (D) 5

An octahedral complex having molecular composition has two isomers A and B. The solution of A gives a white precipitate with $AgNO_3$ solution and the solution of B gives white precipitate with $BaCl_2$ solution. The type of isomerism exhibited by the complex is,

(A) Coordinate isomerism, (B) Ionization isomerism (C) Geometrical isomerism (D) Linkage isomerism

JEE Main 2025

Correct option: (B) Ionization isomerism

'X' is the number of electrons in t_{2g} orbitals of the most stable complex ion among $\left[\mathrm{Fe}(\mathrm{NH_3})_6\right]^{3+}$, $\left[\mathrm{Fe}\mathrm{Cl}_6\right]^{3-}$, $\left[\mathrm{Fe}(\mathrm{C_2O_4})_3\right]^{3-}$ and $\left[\mathrm{Fe}(\mathrm{H_2O})_6\right]^{3+}$. The nature of oxide of vanadium of the type $V_2\mathrm{O}_X$ is :

JEE Main 2025

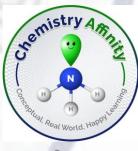
Amphoteric

B Acidic

C Basic

Neutral

$$[Fe(NH_3)_6]^{3+}$$
: d⁵: Low spin: t_{2g}^{5}


$$[FeCl_6]^{3+}$$
: d⁵: high spin: t_{2g}^{3} , e_g^{2}

$$[Fe(C_2O_4)_3]^{3+}$$
: d⁵: low spin: t_{2g}^5

 $[Fe(H_2O)_6]^{3+}$: d⁵: high spin: t_{2q}^{3} , e_q^{2}

Most stable due to chelation: X = 5 V_2O_5 : Amphoteric

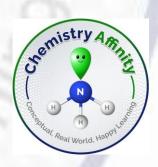
Correct option A

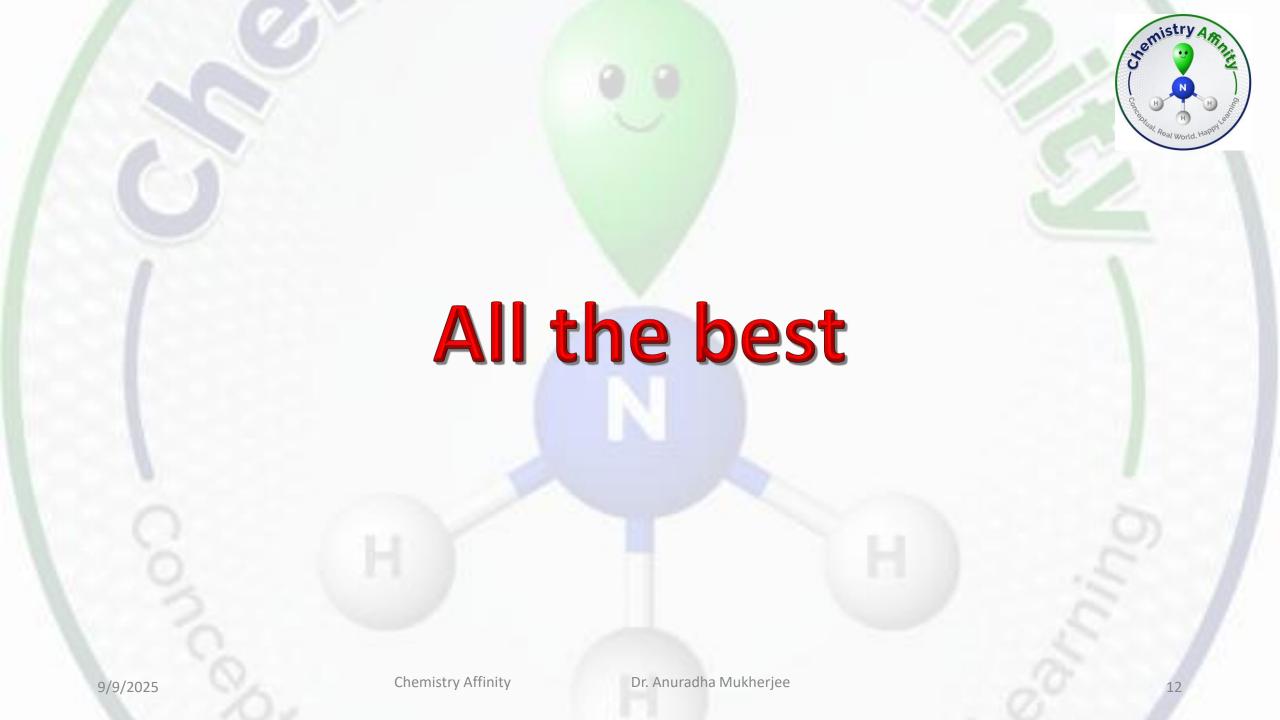

The correct order of $[FeF_6]^{3-}$, $[CoF_6]^{3-}$, $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$ complex species based on the number of unpaired electrons present is:

$$\boxed{ \left[\mathrm{CoF}_6 \right]^{3-} > \left[\mathrm{FeF}_6 \right]^{3-} > \left[\mathrm{Ni}(\mathrm{CO})_4 \right] > \left[\mathrm{Ni}(\mathrm{CN})_4 \right]^{2-} }$$

$$\qquad \qquad \mathbb{E} \ \left[\mathrm{FeF_6} \right]^{3-} > \left[\mathrm{CoF_6} \right]^{3-} > \left[\mathrm{Ni(CN)_4} \right]^{2-} > \left[\mathrm{Ni(CO)_4} \right]$$

$$\hspace{0.1in} \boxed{ \mathbb{D} \ [\mathrm{Ni}(\mathrm{CN})_{4}]^{2-} > [\mathrm{FeF}_{6}]^{3-} > [\mathrm{CoF}_{6}]^{3-} > [\mathrm{Ni}(\mathrm{CO})_{4}] }$$




Which one of the following complexes will have $\Delta_{ m o}=0$ and $\mu=5.96$ B.M?

JEE Main 2025

 $[Co(NH_3)_6]^{3+}$

